Arrhenius Procurement Gert Svensson Dep. Technical Director, NAISS

Arrhenius Procurement

• Steering Group

- Björn Alling
- Patrik Norman
- Erik Lindahl
- Niclas Andersson
- Representative sensitive data
- Project leaders
 - Gert Svensson
 - Andreas Johansson

Procurement type

- Negotiated procedure with prior publication
- Two or several step
 - Invitation to demonstrate capacity to deliver such a system
 - Shortlist
 - RFP
 - Second step proposal submission
 - Possible negotiations
 - Possibly changes to the RFP
 - Third step proposal submission
 - Possible negotiations
 - New proposals
 - Contract

Evaluation

- Based on Total Cost of Ownership (TCO)
 - Purchase costs
 - Maintenance costs
 - Power and cooling costs
 - We give the max TCO for 5 years
 - Mandatory requirements
 - Optional requirements maybe
 - The vendor that can run the benchmarks fastest wins.

Tentative Time Plan

Funding and Agreements 2023

- Hosting Agreement
- Secure funding
- Start preparing site
- Procurement Agreement

2024

Grant Agreement

Procurement

2024

March: Invitation to Participate April: Selection of Vendors May: Invitation to Tender Aug: Tenders Sep – Oct: Negotiation Nov: Award + Contract 2025 Q1: Test system Q2: Starting delivery

Benchmarks

Purpose

- Design, size and configure
- Evaluate
- Accept
- Measure performance and power

Preliminary Candidates

- Applications
 - CFD: Neko
 - MD: Gromacs
 - QC: VeloxChem
 - Climate: ICON
 - AI: Not yet decided
- Synthetic
 - HPCG
 - HPL (single node)
 - STREAM
 - IO-500

Trends in HPC Architecture

- More cores $128 \rightarrow 256$ cores/node
 - Less memory bandwidth per core
- Coupled CPU and GPU:s (cache coherent)
 - May need mix of CPU jobs and GPU jobs.
 - Fixed ratio between #cores in CPU:s and #GPU:s
- Everything with AI is highly expensive and possible with long delivery times.
- GPU:s less optimized for 64-bit floating point calculations (due to AI)

General questions

- Size of partitions?
 - Proposal: 1000 Dual CPU nodes 250 GPU nodes (4 GPU:s/node)
- Do we anticipate application to span different partitions?
- Compatibility with x86, NVIDIA? (Third party applications)
- How much should we optimize for AI-applications vs simulation?

More general questions

- How much should we value fast delivery time?
- How about application where manycore is not optimal (data driven, bioinformatics, neuroscience etc.)?
- What is important for your science area?
- Different access methods
 - Batch
 - Cloud interfaces
 - Interactive use

Memory size

- Different RAM sizes?
 - New faster memory
 - More cores
 - Keep memory BW/core constant?

Storage

- Node vs network attached?
- How can we take care of increasing data sizes?
- Tiered data?
- Why isn't Swestore (dCache) more used?
- Al requirements?
- Should NAISS look into long term storage/archiving in the future?

Sensitive data and Cloud

- Should sensitive data and cloud services applications run on the same hardware as the rest?
- On a fixed partition?
- Industry applications on the same partition?

Discussion